首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29799篇
  免费   2922篇
  国内免费   1228篇
工业技术   33949篇
  2024年   105篇
  2023年   586篇
  2022年   910篇
  2021年   1420篇
  2020年   1210篇
  2019年   1179篇
  2018年   1117篇
  2017年   1229篇
  2016年   1339篇
  2015年   1287篇
  2014年   1765篇
  2013年   2211篇
  2012年   2134篇
  2011年   2379篇
  2010年   1733篇
  2009年   1674篇
  2008年   1460篇
  2007年   1680篇
  2006年   1458篇
  2005年   1106篇
  2004年   951篇
  2003年   861篇
  2002年   691篇
  2001年   597篇
  2000年   394篇
  1999年   295篇
  1998年   197篇
  1997年   184篇
  1996年   146篇
  1995年   148篇
  1994年   144篇
  1993年   126篇
  1992年   116篇
  1991年   69篇
  1990年   91篇
  1989年   65篇
  1988年   68篇
  1987年   51篇
  1986年   52篇
  1985年   38篇
  1984年   36篇
  1966年   30篇
  1965年   33篇
  1964年   61篇
  1963年   49篇
  1961年   48篇
  1959年   37篇
  1957年   34篇
  1955年   47篇
  1954年   29篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Herein, molybdenum disulfide nanoflakes decorated copper phthalocyanine microrods (CuPc-MoS2) are synthesized via two step simple hydrothermal method. The as synthesized hybrid along with pure molybdenum disulfide (MoS2) nanoflower and pure copper phthalocyanine (CuPc) microrods are well characterized by various techniques that confirm phase, morphology, elemental compositions etc. Next, electrocatalytic oxygen reduction reaction towards fuel cell is investigated in alkaline medium and obtained results proclaim that our CuPc-MoS2 heterostructure outperforms the other two constituent materials. Efficient oxygen reduction is achieved following four electron pathway by CuPc-MoS2 whereas partial reduction is done through two electron process by CuPc and MoS2 separately. Long-time durability test reveals almost 97.6% retention after 8000s that eventually dictate us that CuPc-MoS2 heterostructure can be the efficient cathode electrocatalyst for future generation fuel cell.  相似文献   
2.
3.
4.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
5.
《Journal of dairy science》2022,105(12):9463-9475
Phenyllactic acid (PLA) has been demonstrated to possess antibacterial activity and capacity to prolong food shelf life. However, studies on the performance of PLA in inhibiting Staphylococcus aureus and its effectiveness when applied to dairy products are largely lacking. Here, antibacterial activity (planktonic and biofilm states) of PLA against S. aureus CICC10145 (S. aureus_45) were investigated. The results showed that PLA inhibited growth of S. aureus_45 and formation of S. aureus_45 biofilm. Next, the antibacterial action target of PLA was uncovered from both physiological and phenotypic perspectives. The results showed that PLA decreased cell metabolic activity and cell viability, damaged cell membrane integrity, triggered leakage of intracellular contents (DNA, proteins, and ATP), and caused oxidative stress damage and morphological deformation of S. aureus_45. In practical application, the antibacterial activity of PLA against S. aureus_45 cells was further confirmed in skim milk and cheese as dairy food models, and the antibacterial effects can be adequately maintained during storage for 21 d, at least at 4°C. These findings suggested that PLA could be a potential candidate for controlling S. aureus outgrowth in dairy foods.  相似文献   
6.
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood–brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).  相似文献   
7.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
8.
《Ceramics International》2021,47(23):32521-32533
In the current report, pure V2O5, a series of Gd doped V2O5 (1 wt%, 3 wt%, 5 wt% and 10 wt%) and graphene integrated Gd–V2O5 photocatalysts have been prepared using a facile wet chemical approach. The effect of Gd+3 ions substitution and RGO support on V2O5 was studied by the different analytical techniques. X-ray diffraction (XRD) results showed the orthorhombic crystal structure of synthesized samples with crystallize size in range of 22–35 nm. Morphological analysis showed nanorods and nanorod arrays like appearance of V2O5, Gd–V2O5 and GdV-2O5/RGO, respectively. Gd–V2O5 and Gd–V2O5/RGO exhibited enhanced optical response in the visible region along with decrease in the band gap values for Gd doped V2O5 samples. BET surface area of Gd–V2O5 and Gd- V2O5/RGO was calculated as 12.39 g/m2 and 15.35 g/m2 that was found to be higher than pristine V2O5. To study the photocatalytic activity of synthesized photocatalysts, methylene blue (MB) was chosen as model pollutant. Among the Gd doped V2O5 samples, highest photocatalytic activity (45.62%) was achieved by optimal concentration of 5 wt% Gd–V2O5 that is accredited to effective separation of electron-hole pairs. While Gd–V2O5/RGO showed 2.1 times higher dye removal (97.12%) than unsupported Gd–V2O5, under the visible light irradiation. The significantly high photocatalytic activity of Gd–V2O5/RGO is due to the synergistic effect aroused by combined action of Gd+3 ions doping and advantageous properties of highly conductive and large surfaced graphene. Recycling experiments for V2O5 derivatives showed good stability and recyclability of photocatalysts. Additionally, Gd–V2O5/RGO was found to be more potential anti-bacterial agent than V2O5 and Gd–V2O5.  相似文献   
9.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
10.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号